

SDmatic

измерение повреждённого крахмала в муке

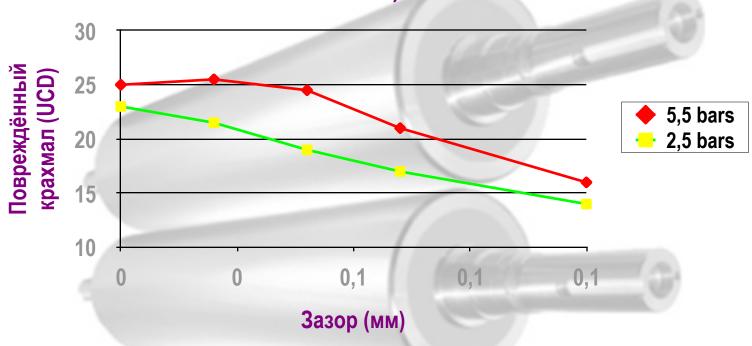
Крахмал

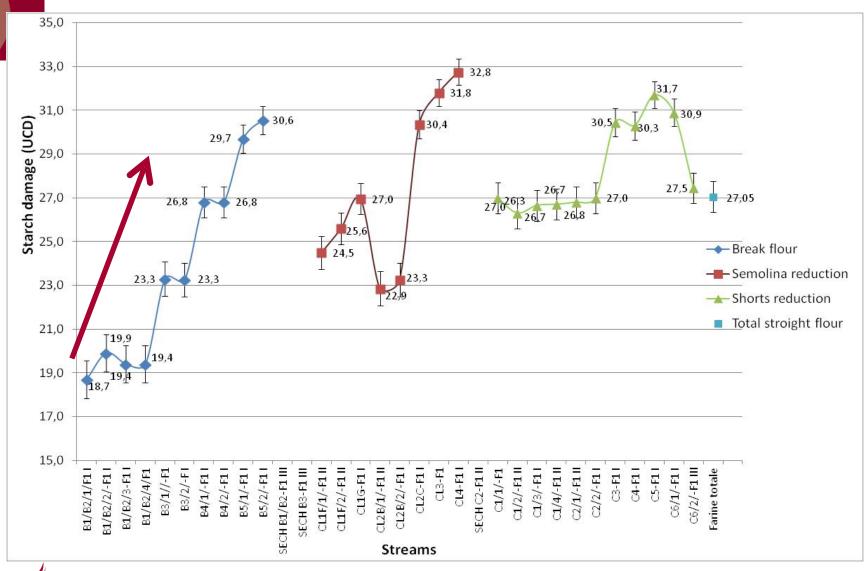
- 67-68% от зерна
- 78-82% от муки
- Амилоза / Амилопектин
- Полукристаллическая структура

Откуда он появляется?

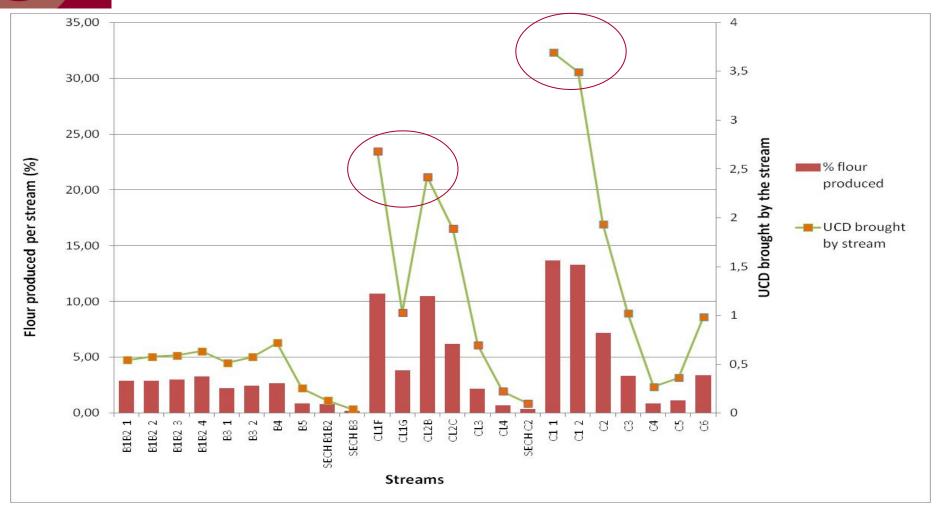
- Появление повреждённого крахмала зависит от сорта зерна и его твердозёрности
 - Гинетический критерий -

- Образуется в результате помола
 - -Механический критерий-



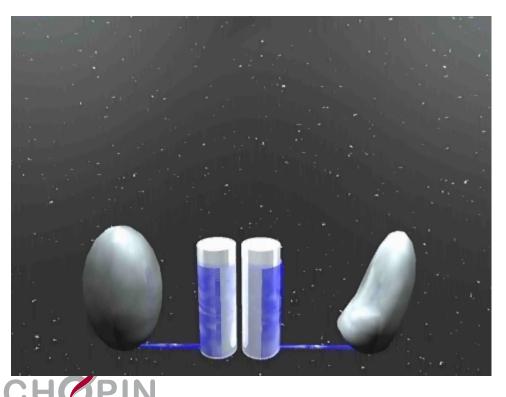

Окуда берётся повреждённый крахмал? Механический критерий

Повреждённый крахмал = f (настройки валков)



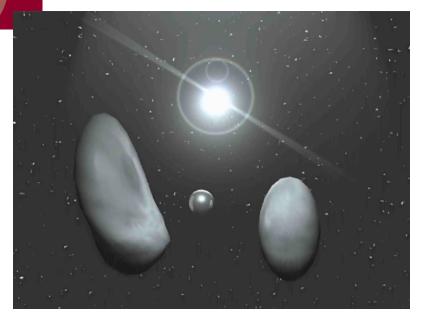
Анализ вальцовых станков!

Анализ вальцовых станков!



Влияние повреждённого крахмала на ВПС

- Белок впитывает в 1.8 раза больше воды чем собственный вес
- Пентозаны в 10 раз больше
- Неповреждённый крахмал всего 0.4 своего веса
- Повреждённый в 4 раза больше своего веса !!!


Цель мукомола

-Производить муку с высокой ВПС

Цель хлебопёка

-Добавить максимально возможное кол-во воды для получения лучшего выхода продукции оптимального качества

Влияние повреждённого крахмала на ВПС муки

Качество теста

-Зависит от способности белка создавать устойчивые соединения с водой

Задача мукомола

-Произвести муку с оптимальным кол-вом повреждённого крахмала, у которой будет максимальная ВПС и хорошая стабильность при замесе

Влияние повреждённого крахмала на замес и процесс брожения

- Кроме влияния на ВПС повреждённый крахмал также влияет на :
- Упруго-эластичные характеристики теста (липкое тесто)
- Поднятие (объём)
- Окраску корки хлеба (красноватый оттенок)
- Амилаза не может атаковать цельные гранулы крахмала :
- - **⇒** 7 срок годности продукта
- Присутствие сахаров вызывает :
- Более интенсивное брожение

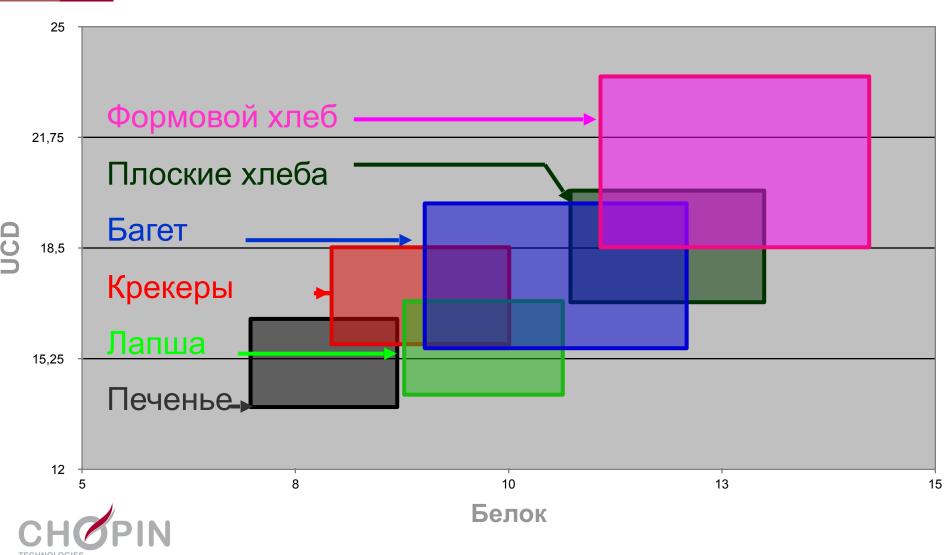
Влияние повреждённого крахмала на печенье

Разломы и крошковатость

 В готовом печенье при открытии упаковки !

Печенье со слишком сильным или недостаточным окрасом

Изменение размера и диаметра



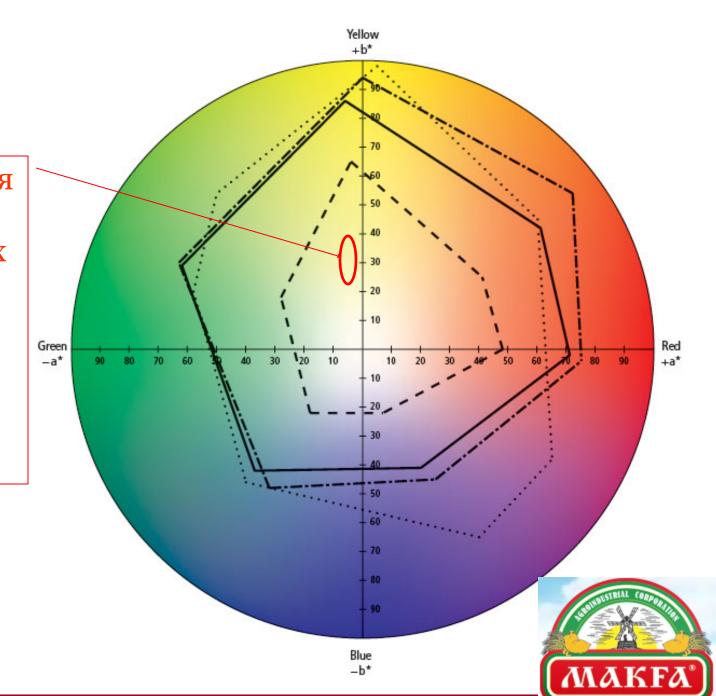
Классификация продуктов и оптимальный уровень повреждённого крахмала

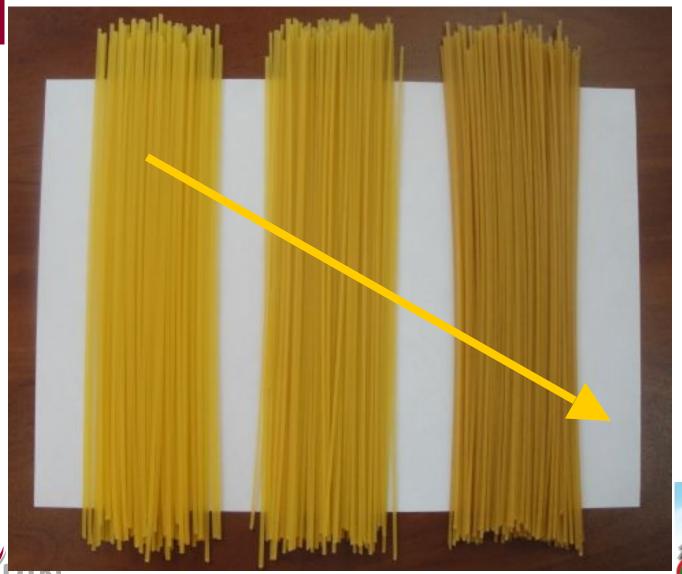
Практическое применение 1 : Связь между качеством сырья и качеством продукта.

Связь между качеством сырья и качеством продукта

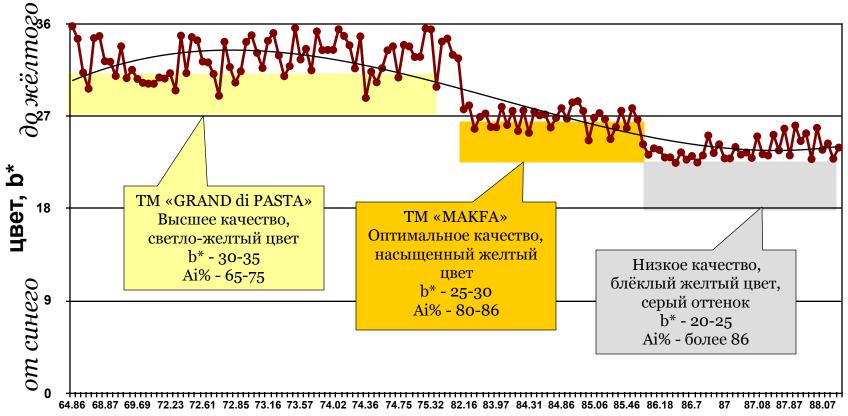
- ОАО «МАКФА» крупнейший изготовитель макаронных изделий, и, как было указано выше одной из главных характеристик, позволяющих определить привлекательность продукта, является внешний вид. Именно внешний вид, и, в первую очередь цвет макаронных изделий, является первым, что видит наш покупатель, именно цвет вызывает ассоциацию с «настоящими макаронами» и говорит о качестве сырья
- Напомню, что в Российской Федерации действуют стандарты на изготовление макаронных изделий как из твердой, так и из мягкой пшеницы и нет законодательного запрета (как в ряде стран Европы) на использование мягкой пшеницы для производства макаронных изделий. Поэтому для нас очень важно, чтобы потребитель понимал, что настоящая паста изготовлена из пшеницы Durum и мог отличить «правильные» макароны.
- Согласно рекомендациям крупных итальянских изготовителей оборудования (FAVA S.p.A.) большое значение в качестве макаронных изделий имеет степень повреждения крахмала в сырье (муке)
- С этой целью в нашей лаборатории были проведены исследования и наработаны статистические данные по оптимальной степени повреждения крахмала в муке из твердой пшеницы применимо к двух торговым маркам нашей компании ТМ «MAKFA» и премиальной ТМ «GRAND di PASTA». Для этого исследовались образцы муки, при использовании которых получаются стандартные макаронные изделия по органолептическим и физико-химическим характеристикам.

- В лаборатории предприятия проведены исследования зависимости степени поврежденного крахмала и цветности сырья для макаронных изделий крупки
- Цвет крупки анализировался на трехкоординатном колориметре (компараторе) Minolta CR410 в области цветовых координат L*a*b*, где:
- L* характеризует изменение цвета от белого к черному (светлота)
- а* от зеленого к красному
- b* от желтого к синему
- На этих же образцах крупки определялся поврежденный крахмал при помощи анализатора SDmatic в шкале Ai,%. В связи со значительностью крупностью частиц сырья по рекомендации CHOPIN Technologies наиболее корректным стало измерение скорости адсорбции йода (Ai).

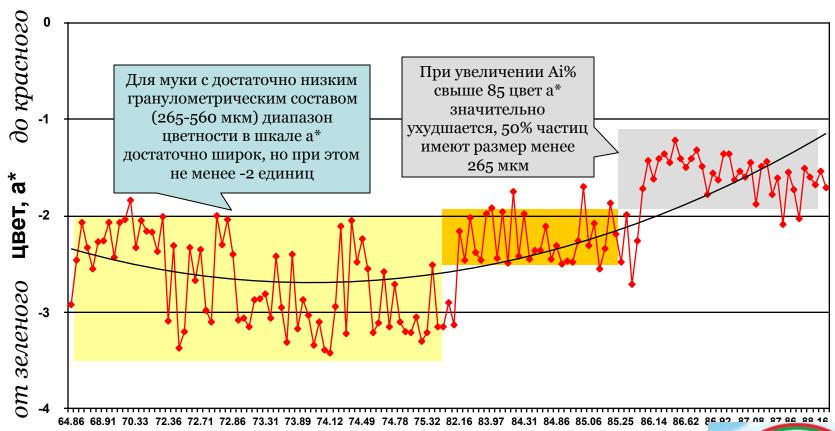




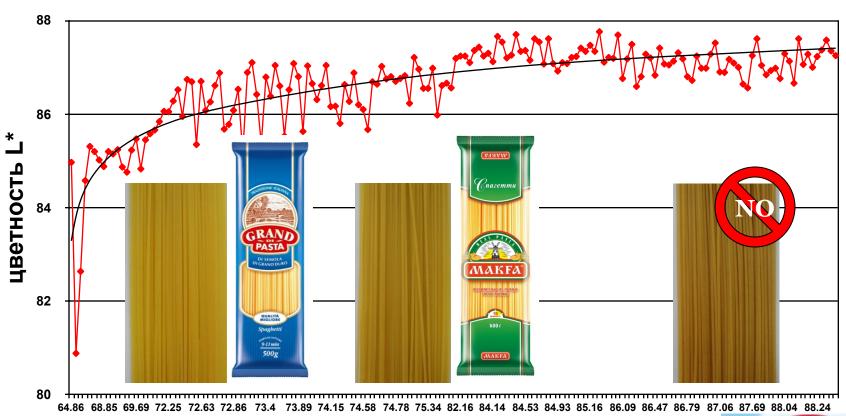
Оптимальная зона цвета макаронных изделий в области цветовых координат а*b*


Влияние поврежденного крахмала на цвет изделия

Влияние поврежденного крахмала на цвет крупки


скорость адсорбции йода, Аі%

Влияние поврежденного крахмала на цвет крупки



скорость адсорбции йода, Аі%

Влияние поврежденного крахмала на светлоту крупки

скорость адсорбции йода, Аі,%

Благодаря использованию SDmatic установлен диапазон требуемых значений по используемым видам муки для макаронных изделий, при котором готовый продукт имеет оптимальные потребительские свойства

	TM «MAKFA»	TM «GRAND di PASTA»
Степень повреждения крахмала в Аі,%	80-85	не более 75

Практическое применение 2 : как снизить энергозатраты?

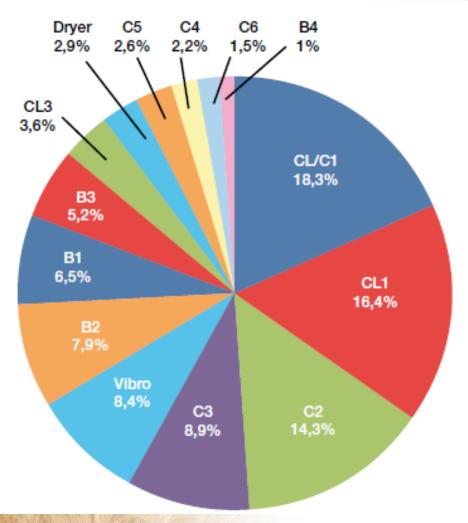
Оптимизация мукомольного процесса

Цена зерна

Электроэнергия

Персонал

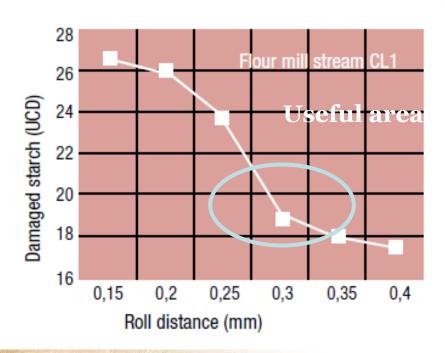
Необходимость снижения расходов



Этап 1: определение целевого значения

- **ОПТИМУМ**:
 - Хлебопечение
 - Французский багет : 17 19
 - Формовой хлеб : 19 21
 - Лепёшка: 21 24
 - Печенье
 - Бисквиты : 14 16
- ✓ Как часто проводится измерение: 1 3 раза в день

Этап 2: Анализ каждого потока


Результаты:

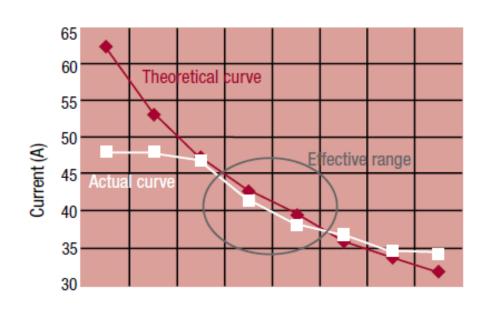
80% всего повреждённого крахмала получаем на 6 основных потоках
(Bk1, Bk2, Siz.1, Siz.2/Red.1, Red. 2, Red.3).

Этап 3: Связь между UCD и зазором

Поток CL1

✓ Оптимум потока: 21 UCD зазор: 0.27 mm

- ✓ Отсюда:
- ✓ Если зазор меньше, то получаем больше UCD.

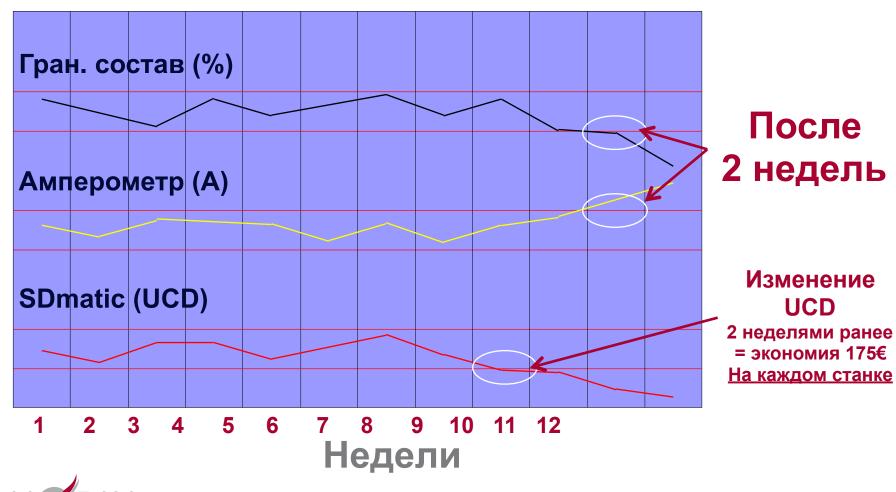

Этап 4: Настройка вальцов (пример В2)

✓ Увеличение давления(В2) →I: 37A 7 43

$$\checkmark \triangle P / P = \triangle I / I \rightarrow \triangle P = \triangle I * P / I$$

⇒
$$\triangle P = 6*22/37 \approx 3,57 \text{ kW} ! (+16\%)$$

✓ За период в 300 дней Доп. потребление = 26 000 kWh (Франция : 1 kWh = € 0,125 / \$ 0.159)


→ Потеря = € 3.250 !

Этап 5: Износ вальцов

Сравнение 3 подходов

Износ вальцов = меньше выход

- ✓ Средний выход : 80 %
- √ Потеря 1 %
- ✓ Стоимость муки € 187 / Т
- √ Стоимость отрубей = €84 / T
- ✓ Для мельницы в 200 Т/Д :
 - Выход муки 80 % = 29 920 € / Отруби 20 % = 3360 €
 - Выход муки 79 % = 29 546 € / Отруби 21 % = 3528 €
- **√** Потеря = € 206 /день
- **→** 2 недели = 2 884 € !!

SD matic

Mill monitoring and optimization with the CHOPIN SDmatic¹

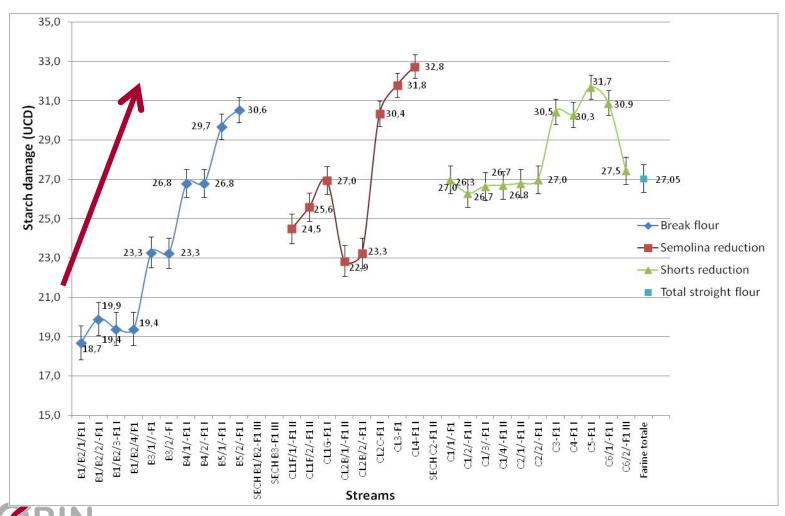
Ahmed BENAMARA 2, Arnaud DUBAT3

Окупаемость прибора на таком предприятии, без учёта влияния на стабильность качества муки, составила менее 6 месяцев.

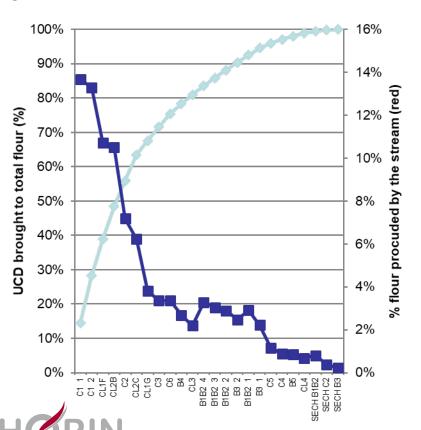
NEOFAR mill, Azazga, Algeria.

Практический пример 3: Управление мукомольным процессом

Контекст


- Мукомол должен настроить мельницу для получения качественной муки.
- Допустим, что определение качества выявило избыток повреждённого крахмала (высокая ВПС, красноватый оттенок корки, проблема с объёмом).
- Что делать ?

1 этап: анализ валковых систем!


1 этап: Проанализировать вальцевые станкі

2 этап: анализ по повреждённому крахмалу

Умножаем выход муки % на UCD.

Cumulative UCD 25 20 15 10 5 B1B2 3 B1B2 2 B3 2 CL2C CL1G 00 03 84 03 Q B 4 Q B1B2 1 B3 1

Практический пример 3: как оптимизировать добавление альфа амилазы?

Контекст

• Закупка зерна производится с разных регионов и у зерна разные качественные характеристики.

- Для коррекции амилолитической активности используется альфа амилаза.
- Необходимо добиться оптимизации данного параметра в независимости от входного сырья.

Как Sdmatic может помочь?

- Со стороны клиента.
- 2 основных причины:
 - > Хлеб не поднимается;
 - Или хлеб получается неудовлетворительного объёма и возникает проблема с цветом и качеством мякиша.

- Возможные причины:
- Объём:
 - Анализ только клейковины недостаточен
 - >> ЧП : зачастую одинаковые значения, но отличие при выпечке

А при чём тут повреждённый крахмал ?

Как Sdmatic может помочь?

- Используя SDmatic
- 1 этап : проанализируйте муку и дозировку фермента;
- 2 этап : В случае увеличения повреждённого крахмала, уменьшайте дозировку фермента
- 3 этап : расчёт целевой зоны
- 4 этап : применение
- формула : SD (UCD) + α-амилаза (кол-во) = X (константа)
- Учитывание повреждённого крахмала позволяет на 80% снизить проблемы с альфа амилазой

Точность метода

Метод	Значения	Точность	Точность в %
SDmatic	12 - 28 UCD	+/- 0,6 UCD	+/-3%
FARRAND	10 - 45 units	+/- 5,0 units	+/-18%
AUDIDIER	10 - 18 %	+/- 1 %	+/-7%
AACC	4 - 9 %	+/- 0,7 %	+/- 13%

Проведение теста на **SDmatic**

- 120 ml дистилированой воды +/-0,1ml
- 3 g Борной кислоты(H₃BO₃) +/- 0,2 g
- 3 g Йодид калия (KI) +/- 0,2 g
- 1 капля Тиосульфата натрия1 д муки +/- 0,1д

Не требует точнейшего взвешивания!! Не требует спец практики !! Полный анализ за 10 мин

Автоматическое завершение теста

Заключение: SDmatic

- В процессе помола невозможно избежать появления повреждённого крахмала.
- ≻Его можно и нужно контролировать на мукомольном производстве.
- ➤Имеет важное влияние на реологию теста :

 - •ВПС муки
 •Стабильность и разжижение теста
 •Процесс ферментации
 •Окраску корки хлеба

 - •Появление трещин и крошковатость печенья...
- > Отсутствие его контроля может привести к катастрофическим результатам в процессе выпечки хлеба.
- ➤ Для каждого изделия оптимален определённый уровень повреждённого крахмала

Спасибо за внимание!

